Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 12(3): e15931, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38296347

RESUMEN

Long-COVID patients present with a decline in physical fitness. The aim of this study is to reveal the impact of pulmonary rehabilitation (PR) on physical fitness, quality of life (QoL), and parameters of quantified thorax CT. Long-COVID patients enrolled in a 3-month PR program were retrospectively studied. PR included endurance and resistance training three times a week. Assessments pre- and post-rehabilitation included quantified chest CT, pulmonary function tests (PFT), six-minute walk test (6MWT), cardiopulmonary exercise test, and questionnaires: Hospital Anxiety and Depression Scale, post-COVID-19 Functional Status scale, Borg score, and EuroQol. Seventeen subjects (5M/12F), mean age 42 ± 13 years, were included. PR improved all questionnaires' results significantly. Only significant difference in PFT parameters was correlation between baseline total lung capacity (TLC) and difference in TLC pre- and post-rehabilitation (p = 0.002). 6MWT increased from 329 to 365 m (p < 0.001), VO2max changed from 21 to 24 mL/kg/min (p = 0.007), peak load increased from 116 to 141 Watt (p < 0.001). Blood volume in small pulmonary vessels of 1.25 to 5 mm2 in cross-sectional area (BV5%) was higher than observed in patients with acute COVID-19 infection. After rehabilitation, BV5% decreased from 65% to 62% (p = 0.020). These changes correlated directly with changes in TLC (p = 0.039). Quantified CT airway volume increased after rehabilitation (p = 0.013). After rehabilitation, TLC tended to normalize due to (re)opening of small airways, with decline in air trapping and recruitment of alveoli. Furthermore, this study revealed that pulmonary rehabilitation can improve QoL and physical fitness in long-COVID patients.


Asunto(s)
COVID-19 , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Calidad de Vida , Síndrome Post Agudo de COVID-19 , Pulmón
2.
Physiol Rep ; 11(12): e15754, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37344757

RESUMEN

Patients with post-acute sequelae of COVID-19 (PASC) present with a decrease in physical fitness. The aim of this paper is to reveal the relations between the remaining symptoms, blood volume distribution, exercise tolerance, static and dynamic lung volumes, and overall functioning. Patients with PASC were retrospectively studied. Pulmonary function tests (PFT), 6-minute walk test (6MWT), and cardiopulmonary exercise test were performed. Chest CT was taken and quantified. Patients were divided into two groups: minor functional limitations (MFL) and severe functional limitations (SFL) based on the completed Post-COVID-19 Functional Status scale (PCFS). Twenty one patients (3 M; 18 FM), mean age 44 (IQR 21) were studied. Eighteen completed the PCFS (8 MFL; 10 SFL). VO2 max was suboptimal in both groups (not significant). 6MWT was significantly higher in MFL-group (p = 0.043). Subjects with SFL, had significant lower TLC (p = 0.029). The MFL-group had more air trapping (p = 0.036). Throughout the sample, air trapping correlated significantly with residual volume (RV) in L (p < 0.001). An increase in air trapping was related to an increase in BV5 (p < 0.001). Mean BV5 was 65% (IQR 5%). BV5% in patients with PASC was higher than in patients with acute COVID-19 infection. This increase in BV5% in patients with PASC is thought to be driven by the air trapping in the lobes. This study reveals that symptoms are more driven by occlusion of the small airways. Patients with more physical complaints have significantly lower TLC. All subjects encounter physical limitations as indicated by suboptimal VO2 max. Treatment should focus on opening or re-opening of small airways by recruiting alveoli.


Asunto(s)
Síndrome Post Agudo de COVID-19 , Humanos , Estudios Retrospectivos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Prueba de Esfuerzo , Pruebas de Función Respiratoria , Pulmón/diagnóstico por imagen , Síndrome Post Agudo de COVID-19/diagnóstico , Síndrome Post Agudo de COVID-19/fisiopatología , Síndrome Post Agudo de COVID-19/rehabilitación
3.
BMC Pulm Med ; 22(1): 477, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522658

RESUMEN

BACKGROUND: Gravity, and thus body position, can affect the regional distribution of lung ventilation and blood flow. Therefore, body positioning is a potential tool to improve regional ventilation, thereby possibly enhancing the effect of respiratory physiotherapy interventions. In this proof-of-concept study, functional respiratory imaging (FRI) was used to objectively assess effects of body position on regional airflow distribution in the lungs. METHODS: Five healthy volunteers were recruited. The participants were asked during FRI first to lie in supine position, afterwards in standardized right lateral position. RESULTS: In right lateral position there was significantly more regional ventilation also described as Imaging Airflow Distribution in the right lung than in the left lung (P < 0.001). Air velocity was significantly higher in the left lung (P < 0.05). In right lateral position there was significantly more airflow distribution in the right lung than in the left lung (P < 0.001). Significant changes were observed in airway geometry resulting in a decrease in imaged airway volume (P = 0.024) and a higher imaged airway resistance (P = 0.029) in the dependent lung. In general, the effect of right lateral position caused a significant increase in regional ventilation (P < 0.001) in the dependent lung when compared with the supine position. CONCLUSIONS: Changing body position leads to significant changes in regional lung ventilation, objectively assessed by FRI The volume based on the imaging parameters in the dependent lung is smaller in the lateral position than in the supine position. In right lateral decubitus position, airflow distribution is greater in dependent lung compared to the nondependent lung. TRIAL REGISTRATION: The trial has been submitted to www. CLINICALTRIALS: gov with identification number NCT01893697 on 07/02/2013.


Asunto(s)
Pulmón , Respiración Artificial , Humanos , Voluntarios Sanos , Volumen de Ventilación Pulmonar , Pulmón/diagnóstico por imagen , Pulmón/fisiología , Respiración Artificial/métodos , Postura
4.
J Appl Physiol (1985) ; 133(6): 1295-1299, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36269576

RESUMEN

Throughout the COVID-19 pandemic, a portion of those affected have evolved toward acute hypoxic respiratory failure. Initially, this was hypothesized to result from acute lung injury leading to acute respiratory distress syndrome (ARDS). In previous research, a novel quantitative CT post-processing technique was described to quantify the volume of blood contained within pulmonary blood vessels of a given size. We hypothesized that patients with lower BV5 blood flow would have higher supplemental oxygen needs and less favorable arterial blood gas profiles. From the initial data analysis, 111 hospitalized COVID-19 patients were retrospectively selected based on the availability of CT scans of the lungs with a slice thickness of 1.5 mm or less, as well as PCR-confirmed SARS-CoV2 infection. Three-dimensional (3-D) reconstructions of the lungs and pulmonary vasculature were created. Further analysis was performed on 50 patients. Patients were divided into groups based on their need for oxygen at the time of CT scan acquisition. Eighteen out of 50 patients needed >2 L/min supplemental oxygen and this group demonstrated a significantly lower median percentage of total blood flow in the BV5 vessels compared with the 32 patients who needed <2 L/min supplemental oxygen (41.61% vs. 46.89%, P = 0.023). Both groups had significantly less blood as a proportion in BV5 vessels compared with healthy volunteers. These data are consistent with the hypothesis that reduced blood volume within small (BV5) pulmonary vessels is associated with higher needs for supplemental oxygen and more severe gas exchange anomalies in COVID-19 infections.NEW & NOTEWORTHY This research provides, by using new imaging analysis on CT imaging, an insight into the pathophysiology of patients with COVID-19 infection. By visualizing and quantifying the blood in small vessels in the lung, we can link these results to the clinical need for oxygen in patients with COVID-19 infection.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Pandemias , SARS-CoV-2 , ARN Viral , Estudios Retrospectivos , Pulmón/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia , Tomografía Computarizada por Rayos X/métodos , Oxígeno , Volumen Sanguíneo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...